董小玉:2016年清華大學優秀博士學位論文二等獎獲得者
自由費米子凝聚態體系中與拓撲相關的物理現象
Topological related physics in free-Fermion condensed matter systems
作 者:董小玉
指導教師:朱邦芬
培養院系:物理系
學 科:物理學
讀博感言:好奇心和敢于嘗試的勇氣是最重要的
研究背景/選題意義/研究價值
最近幾年,拓撲態及對稱性保護的拓撲態成為凝聚態物理研究的一個前沿和熱點。拓撲態最大的特點是如果我們連續絕熱地改變體系的參數,只要體材料的能隙在這個過程中不合上,其拓撲性質就不會發生改變。拓撲態的表現形式通常為體材料是絕緣體,而其表面上具有無能隙的表面態。這種表面態是被體材料的拓撲性質保護的,所以可以非常穩定地存在。這種性質可以用來制備新型的電子器件。以二維拓撲絕緣體為例,其一維邊界處的邊界態是不會被非磁性雜質散射的。理論上來說,用這類材料制備的電子器件是不存在散熱問題的,可以實現信息的“高速公路”。所以對拓撲態的研究是具有廣泛且重要的應用前景的。
主要研究內容
在本論文中我們主要討論了一些典型的拓撲態,結合理論模型和實際材料,我們預言了若干新的拓撲態存在。我們主要在論文中討論以下三個方面的問題:
二維狄拉克材料及量子反常霍爾效應:我們發現材料(LaO)2(SbSe2)2的二維薄膜具有多個狄拉克錐,并且其性質可以通過外加電場進行調控。引入磁性摻雜后可以在體系中實現由電場調控的量子反常霍爾效應。
二維反鐵磁材料體系中的量子反常霍爾效應及手征拓撲超導態:我們發現在Sr2FeOsO6薄膜中通過外加電場調節可以實現量子反常霍爾態。如果將薄膜長在超導體材料上,可以通過近鄰效應引入超導配對,實現手征的拓撲超導態。
三維拓撲晶體絕緣體:我們采用群論的方法,發展了一套對三維拓撲晶體絕緣體進行分類的方法。具有一個表面的三維體系的晶體對稱性是由17個二維空間群來描述的。通過確定具有某種特定對稱性的半無限體系的所有可能的非平庸表面態,我們可以反推出相應體材料的拓撲性質,并給出拓撲不變量。我們的理論為實驗上在實際材料中尋找拓撲晶體絕緣體提供了指導。
更多精彩資訊請關注查字典資訊網,我們將持續為您更新最新資訊!